Geodesy Primer: Datums \& Projections

Sam Knight

Director of Product Management,
Blue Marble Geographics

Training Agenda

-9:00 to 11:00 (Break @ 10:00):
-2:00 to 4:00 (Break @3:00):

- Introductions
- Geodesy
-Coordinate Systems
-Datum Transformations
-Map Projections

Geodesy

What is Geodesy?

- The science of measuring the size and shape of the Earth
- Determination of the exact position of points on its surface
- How that changes over time

Size \& Shape

- Earth is a Pseudo-spheroid roughly 6,357km in radius
- It's wider at the Equator than the poles
- The surface undulates

Coordinates

- What are Coordinates?
- A set of numbers used to represent points in space
- Measures relative to an Origin and Axes
- Depending on the coordinate system, coordinates can be displayed in various formats of various units.
- Units
- Angular
- In Geodetic Coordinate Systems, coordinates are given in angular units, the most common being Degrees.
- Angular units can be displayed in a number of formats
- Linear
- Cartesian and Projected coordinate systems use linear measures
- Unit format is mostly limited to decimal precision.

Geodetic Coordinate Systems

- Globes are the most accurate maps we have
- All geodetic systems use Latitude and Longitude to define the positions on the Earth. These are angular measurements, not linear
- The two main reference lines from which all distances and locations are calculated are the Equator and the Prime Meridian

Ellipsoid

- Sir Isaac Newton popularised the non-spherical shape of the Earth into public awareness. He concluded that the Earth was an "oblate ellipsoid of revolution" - an ellipse wider at the equator than at the poles.

-At the equator, the diameter of the Earth is ~ 7927 miles ($\sim 12,756 \mathrm{~km}$). At the poles, the diameter is almost 7900 miles ($12,713 \mathrm{~km}$). 27 miles, a difference of 0.34% is just enough to give map makers a headache.
-If it weren't for Flattening, mapping would be as easy as Pi.

Flattening

Flattening is the ratio of the difference between the Semi-Major Axis, and the Semi-Minor Axis.

$$
\begin{gathered}
f=(a-b) / a \\
1 / f=a /(a-b)
\end{gathered}
$$

Ellipsoid

Plessis 1817
Bessel 1841
Airy 1830
GRS80/WGS84
Clarke 1866
Clarke 1880
SLC95

Radius to Equator
6,376,523 meters
6,377,397 meters
$6,377,563$ meters
6,378,137 meters
6,378,206 meters
6,378,206 meters
6,378,523 meters

1/f Region
308.64 France
299.15 Japan
299.32 UK
298.26 World
294.98 North America
293.46 France, Africa
298.28 St Louis County, MN

Horizontal Datums

- A datum is a "mappable surface" defined by an ellipsoid with a base-point and a reference meridian.
- A datum takes your ellipsoid and gives it an origin, tying it to the earth at one spot.
- One point on the Earth can have many different coordinates, depending on the datum being used.
- You can have an ellipsoid without it being a datum.
-You CAN NOT have a datum without an ellipsoid!

The Equator \& Prime Meridian

The Equator

- The Equator divides the Earth in half with an imaginary line that runs East/West around the middle of the globe.
- All similar lines running parallel to the equator at constant increments are called lines of Latitude.
- Also referred to as parallels, they run 90 degrees north and 90 degrees south of the equator and they never intersect with each other.

The Prime Meridian

- The Prime Meridian is a mostly imaginary (and arbitrary) line that runs North/South, dividing the Earth in half from pole to pole. (Est. 1851 by Sir George Airy; standardized in 1884.)
- It runs through the Royal Observatory of Greenwich, England and is also known as the Greenwich Meridian.
- All similar lines running North/South through the poles are called lines of Longitude.
- They are farthest apart at the equator and converge at the poles.

Degrees

- How "Big" is a Degree?
- One degree of longitude on the surface of Earth at the equator is approximately 69.17 mi (111.32 km)
- At the North/South Pole, it is 0 miles
- Degrees are not constant distances on the surface like linear measurements
- Different Formats
- Degrees Minutes Seconds, Decimal Minutes, Decimal Degrees are some of the more common degree formats
- $44^{\circ} 13^{\prime} 36.96^{\prime \prime} \mathrm{N}, 69^{\circ} 46^{\prime} 29.11^{\prime \prime}$ W Degrees Minutes Seconds
- 44ํ 13.616', -69° 46.485' Decimal Minutes
- 44.226933, -69.774753 Decimal Degrees
- 44.133696, -69.462911 DMS
- 44.136160, -69.464851 DM
- 44133696, -069462911 Packed DMS
- 44136160, -069464851 Packed DM

Cartesian \& Projected Systems

- Relative measures of distance, area, and direction are linear, and constant throughout the Cartesian system.
- A two or three dimensional coordinate system in which, in the top example, X measures East/West distance and Y measures North/South distance.
- Each point on the plane is defined by an X, Y, and sometimes Z coordinate pair. The point of intersection where the axes meet, is called the origin.

3 DIMENSIONAL CARTESIAN COORDINATE SYSTEM

WGS84 Ellipsoid/Datum

- World Geodetic System of 1984 is a standard ellipsoid definition worldwide -Earth-centered, a "best fit" for the whole earth
- Originally created as Geodetic Reference System of 1980 by the US Defense Mapping Agency
- Used as the basis worldwide for the GPS satellite network
- It serves as a common ellipsoid/datum through which we convert most other datums

Datum Transformations

- When coordinates exist on one datum, and the need exists to plot or display them based on another, a datum transformation is required.

3 Parameter shift (Molodensky, Geocentric):

- When performing a 3 parameter datum transformation, a linear shift
 is applied to the x, y, and z axes at the geocenter.
-Accuracy can be +/- 1 to 50 meters.
-Does not model network distortions well.
-But, they are easy to calculate!

7 Parameter Shift (Bursa-Wolfe, Helmert):

- The same x, y, z shift found in the Molodensky method, but with 3 additional parameters of rotations of the axes and a scale. -If applied properly can allow for more accurate mapping of $+/-1 \mathrm{~m}$ over large areas.
-Rotation sense is critical
Other Transformation Methods (High Accuracy):
-Molodensky-Badekas 10 parameter (Rare)
-NADCON, HARN, NTv2, OSTN02, etc: (Gridded data tables)

What is a datum shift really?

Datum Transformations - Example

NAD 27 to WGS84

- NADCON (15cm)
- MRE (3m)
- Canadian NTv2 (3m)
- Molodensky
- East US (13m)
- Continental US (14.5m)

Vertical Datums

Geoid Model

-A zero surface to which elevations or heights are referred.

- Irregular surface model of the Earth that takes into account an average calculation of elevation factoring in ocean depth, gravimetric readings, and terrestrial height.

Geoids and Mean Sea Level

Geoid Model vs. MSL

- Not the same thing!
- Vertical models are approximations of MSL
- Some are not sea level at all, but are actually tidal offsets, or some other local reference
- MSL is a "moving target"
- For highest accuracy, local vertical deflections must be taken into account

Map Projections

Round Earth, Flat paper:

-Projecting a coordinate system simply means taking an image of the Earth (3D) and accurately displaying it on a two-dimensional surface.
-Different projection methods will result in different geometric properties on the final map.
3. Project onto surface

Projection Types

-Azimuthal

-The plane of projection touches the surface of the Earth at one point.

Conic

-A cone shape is either tangent or secant to the globe, and the map is projected inside the cone.

Cylindrical

-A cylinder is wrapped around the surface of the globe. The point of contact is a Great Circle.

Projection Properties

-Equal Area- Proportional preservation of surface areas. Linear and distance distortion occurs.
-Equidistant- Distances from the center point of the projection to any point (Great Circles) are preserved.
-True Direction- Rhumb lines represent true north azimuths. There is no convergence distortion.
-Conformal- Angles between points and shapes of small areas are preserved. The backbone of surveying coordinate systems.

Projection Terms (cont’d)

- Convergence

- The horizontal angle at a point between true North and Grid North.

Projection Terms (cont’d)

Scale Factor

- The relationship between distance measured on the projected surface and distance measured on the ellipsoid.

Projection Terms

-Azimuth- Angle between North and direction of travel, measured clockwise from North.
-Also called: Heading, Bearing, or Direction
-Great Circle- An arc that divides a sphere (in this case Earth) into two equal parts. Any line of Longitude (meridian) is a Great Circle.
-Rhumb Line- A line that intersects each meridian at the same angle.
-Great for navigation

Mercator Projection

- Originally used for navigation.
-All meridians appear as parallel lines.
-Distances are true only along the Equator (or the parallel of origin), but are reasonably correct within 15° of the Equator
-Distortion increases further from the Equator and is extreme in polar regions.

G E O G R A P H IC S

Transverse Mercator

- Maps in this projection are used for mapping large areas that are mainly north-south in extent.
-Distances are true only along the central meridian, or two standard meridians.
-Used for most national grids, and of course Universal Transverse Mercator systems.

Lambert Conformal Conic

-Distortion of shapes and areas is minimal at, but increases away from standard parallels.

Stereographic

- Used to map large continent-sized areas of similar extent in all directions.
- Polar aspects are used for topographic maps and charts for navigating in latitudes above 80°.
-Scale increases away from the center point.
- Any straight line through the center point is a great circle. Distortion of areas and large shapes increases away from center point.

So Many Projections: How Do I Choose?

-Geographic Extent (area in which you want to map)
-What are you going to do with the map?
-Properties of the projection
-What standards are already in place?
-National grids, EPSG, business rules...

Further Reference

- NGS Video Library:
http://www.ngs.noaa.gov/corbin/class_description/NGS_Video_Library.shtml
- Book: Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time by Dava Sobel
- Book: Datums and Map Projections: For Remote Sensing, GIS and Surveying, Second Edition 2nd Edition by Jonathan Iliffe (Editor), Roger Lott (Editor)
- Book: Flattening the Earth: Two Thousand Years of Map Projections by John P Snyder

THANKs!
 QUESTIONS, DISCUSSION?

Sam Knight
Director of Product Management
geohelp@bluemarblegeo.com
www.bluemarblegeo.com

